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We derive the statistical limit of the spectral autocorrelation function and of the survival probability for the
indirect photodissociation of molecules in the regime of nonoverlapping resonances. The results are derived
in the framework of random matrix theory and hold more generally for any chaotic quantum system that is
weakly coupled to the continuum. The “correlation hole” that characterizes the spectral autocorrelation in
the bound molecule diminishes as the typical average total width of a resonance increases.

Quantum systems that are classically chaotic are believed toparticularly difficult to measure a complete set of levels because
exhibit statistical fluctuations in their spectra and wavefunctions the density of states is very large at higher excitations.
that are universdl. These universal properties are well- A measure of chaos that is less sensitive to experimental
reproduced by the assumption that the Hamiltonians belong toresolution is the spectral autocorrelation function and its
an ensemble of Hamiltonians that are consistent with the counterpart in the time domain, the survival probabify!
underlying symmetries but are otherwise random. Such randomSince the spectral autocorrelation involves the convolution of
Hamiltonians are described by random matrix theory (RMT)  the spectrum (i.e., strength function) with itself, it is less
and lead to level repulsion, long-range correlations in the sensitive to experimental noise. The spectral autocorrelation
spectrum, and PorteiThomas statistics for the transition function is easily constructed from the experimental measure-
intensities. RMT was initially developed to explain the statisti- ments. For example, using lasers one can excite molecules that
cal properties of the neutron resonances in the compoundare vibrationally and rotationally cooled and measure their
nucleus® However, similar statistical fluctuations are observed absorption or fluorescence spectra (i.e., the strength function
in a variety of molecular systems. These include fluorescence of the dipole operator). The convolution of the measured
excitation spectra of polyatomic molecules, e.g., the vibrational spectrum with itself is the spectral autocorrelator or the power
levels and intensities of nitrogen dioxftkand pyraziné. Level spectrum. The corresponding quantity in the time domain, i.e.,
repulsion was observed in acetylehend statistical signatures  the Fourier transform of the power spectrum, is the probability
of RMT were found in the Stark level-crossing spectra of that an initially prepared nonstationary state (e.g., the state
formaldehyde at the dissociation threshblét low excitations ~ generated by the operation of the dipole operator on the ground
the molecular Hamiltonian is approximately separable (though state of the. molecule) remains in its initial state at a later time.
anharmonic), and the vibrational eigenstates are described by Or @ chaotic or complex system, it was suggested that the power
normal modes, allowing the assignment of good quantum spectrum and the associated survival _probablllty of t_he experi-
numbers (‘regular’ regime). However, at higher excitations the Mentally prepared state are characterized by the existence of a
normal modes are strongly mixed and the spectrum is better c_or_relatlo_n hole (|.e._, a pronounced local mlnlmum) that
characterized in terms of its statistical properties (“chaotic” originates in the repulsion of energy levéisA correlation hole

regime). A transition from regular to chaotic spectrum was was observed in the spectrum of highly excited vibrational levels
observe.d in the vibrational levels of €% of complex molecules like methylglyoXaland acetylené? The

. ) correlation hole is a signature of chaos and it disappears when
Statistical measures of a spectrum include the nearesty,o dynamics of the system becomes regular.

neighbors level spacing distribution and spectral rigidity (e.g.,
the Mehta-Dyson Aj statistics). Such measures require ac-
curate experimental determination of a complete set of Iévels.
In practice this is not always possible since the finite experi-
mental resolution makes it difficult to determine the statistics
of the small level spacings. In molecular spectroscopy it is

The average survival probability and power spectrum in
chaotic systems were evaluated in a closed form using RMT
for the various classes of Gaussian ensemWles)d in the
framework of a scattering mod#l. Similar expressions can be
obtained by considering discrete time evolution for the circular
Dyson ensemble$. The survival probability (and the associated
power spectrum) carries information on both spectral and

?5;’.263%’;‘2?? author. eigenvector statistics. The derivation was restricted to systems

*Universita-GHyEssen. that are closed and have discrete spectra. However, in many
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hole, an effect attributed to unobserved good quantum nu#ibers rJjz2
and/or the transition to regular dynami¢$8 However, since o(E) = z |mTgf ————— 1)
the correlation hole can also be affected by the coupling of the n (E— En)2 + Fn2/4

closed system to its environment, it is important to derive the

correlation hole quantitatively in this more general situation. !N €9 1 each transition intensity (to a state imbedded in the
continuum) is weighted by a Lorentzian centered at the

An important class of processes where coupling to the resonance energy. In indirect photodissociation, the photoab-

continuum is important is the photodissociation of molecules. sorption spectrum is proportional to eq 1 whaes the dipole
In particular we are interested in indirect photodissociation that operator of the molecule. In the following we consider only
proceeds through resonances of the excited molecular codiplex. weakly coupled systems that are characterized by nonoverlap-

A light pulse excites the molecule to a higher electronic state ping and narrow resonances (relative to their mean spacing). In
at energies above the dissociation threshold but where a potentiathis case|nJare just the eigenstates of the closed system

barrier hinders the immediate dissociation of the molecule. The HamiltonianH, E, are the eigenvalues ®f (to leading order
barrier is usually formed because of the avoided crossing of we ignore shifts in eigenvalues), and the widths are given by
two diabatic electronic potential surfaces (one that is binding
and one that is repulsive). Vibrational excitations (below and
above the barrier) become resonances whose widths depend on
the coupling between the binding and repulsive manifolds. Such
resonances can also be populated in molecular reactions thatvherel'n. = |ync|? is the partial width of a resonance leveto
proceed through an excited molecular complex. decay into an open chanre{yn is the partial width amplitude).

Recently, the universal correlator for the bound-to-continuum W€ assume that there are open channels. In thB-matrix
strength function was derived for any degree of openness c)fformulatlon of reaction theory it is possible to express the partial

the quantum systef?, by using the method of the supersym- mgtgoﬁr:g'gi%‘?nascﬁgnox;”ag Ee?]r(;!ozf gt“teheelgnetgm%f the
metric nonlinearr model?-22 However, the general expression . -Sponaing channel wave functi : _
. . internal “interaction” region and the external asymptotic re-
turned out to be rather complicated. Here we show that in the gion 2
regime of isolated resonances .(|.e., weak. coupling) a muph The total strength satisfies the sum dle
simpler closed form can be derived by using random matrix
techniques. This regime of nonoverlapping resonances corre- _ _ 1
- . o ) o(E) dE = T = [g|TT|gO 3
sponds to indirect photodissociation at energies where the f © Z' | |gE|]2 9T Tlg 3)
corresponding vibrational resonances lie below the barrier in . .
the excited electronic potential surface. The width of such so that the experimentally prepared sfigi tan be normalized
resonances is smaller than a typical separation between vibraby defining jaO= T|gy/[@ T'T|gl The normalized strength
tional states by a factor of up to several thousand. The function&(E) = o(E)/fo(E') dE' can then be rewritten as
derivation in this paper is accomplished in the time domain
where the survival probability of the experimentally prepared 1 I /2
2 2
TE-E) +TI,74

A
rn = Iﬂnc (2)

n=

nonstationary state is averaged over the ensemble. This o(E) = z |m1|aD]2 (4)
derivation is analogous to that used in ref 14 for closed systems. "

However, in the case of an open quantum system, it is necessary
to take into account the decay of the system into the continuum.
The probability for an open chaotic system (that is initially
bound) to remain bound at a later time was calculated in ref
23. The coupling of the system to the continuum is described
by the average parti_al yvidths of the system to decay into each Glw) = f°° o(E)o(E + w) dE (5)
of the open dissociation channels. The spectral correlator -

derived in this paper in the quantum ergodic limit (see €qs 16 | the time domain we can defir@(t) as the Fourier transform
and 15 below) depends only on these average partial “dissocia-qy o(E), C(t) = /7, exp(—iEt)o(E) dE. Using eq 4 we find
tion” widths (and the symmetry class of the Hamiltonian) but

is otherwise universal. We find that the correlation hole c(t) = z |m|oJPe Bt T2 = (g o (t) O (6)
diminishes when the partial widths of the resonances become 0

larger or when the number of open channels increases. . )
. . . . where|o(t)(= exp(—iHent)|oOs the state at timethat evolves

An open system is described by an effective HamiltomaR o the experimentally prepared nonstationary initial stafe
= H — iT'/2, whereH is the Hamiltonian of the system when it nqer the effective HamiltoniaHer. Thus the Fourier trans-
is uncoupled from the continuum ariiis & matrix describing  form of the spectral autocorrelatid®(w) is just the survival
the coupling of the system to external open chanffel$?%In probability P(t) = |C(t)[? i.e., the probability at time that the
indirect dissociationid represents that part of the Hamiltonian  system remains at its initially prepared state. Notice that for
that includes the “binding” potential energy surface only, while an open system, decay (into the continuum) is included in the
the open channels describe the possible dissociative states ofime evolution. By use of eq 6, the survival probability can be
the molecule. The eigenstatéal of Hey have complex expressed as
eigenvaluess, — iI'/2, describing resonances with energies )
E. and widths[,. Bound-to-continuum transitions that proceed P(t) = ZImIOLﬂ]4 g i+ Z | @ P| [njoP €& 5
through resonance states are described by the strength function n r=m
of the corresponding transition operafat® g MUTwtTm/2 @)

n the following we shall simply uses(E) to denote the
normalized strength function.

The spectral autocorrelation functi@{w) is defined in terms
of the strength function By



Spectral Autocorrelation Function

We would like to calculate the ensemble averagé (. In
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factor is known analytically for both the GOE and GUE

RMT, the eigenvalues and eigenvectors are statistically inde- ensembles

pendent. This implies thaim|aJ? andl, (which are determined

by the eigenfunctions) are statistically independent from the b0 =

spectrumE,. Moreover, we assume that the prepared gtaie

has no overlap with the channels, so that the projection of the

eigenstatgnton |aOand on the channels (i.e., partial width

amplitudes) are also statistically independent. We conclude that

all three quantities|m|ad?, T'n, andE,, appearing in eq 7, are

{ [1—2e + |rlin(L + 2e)] O(L — Jo]) + [|r|ln (S:%fi) - 1] o7 — 1) (B= 1)}

(1 —1Iz1) 01 — Iz]) B=2)
12)

Combining egs 8, 10, and 11 and measuring time in units of

statistically independent. Consequently, the ensemble averagehe Heisenberg timer (= t/ty), we find for the ensemble average
on the right-hand side of eq 7 can be taken over each factor of the survival probability

separately. In RMT, the eigenvector components are distributed

randomly on theN-dimensional sphere, and thus one finds for
a fixed normalized vectojol

m __B (8)
B+2
Do
N|m|0~[ﬂ4: [\I?ﬁ_:_zz

Heref is a constant that depends on the corresponding Gaussial
ensemble. For systems that conserve time-reversal symmetr
the relevant ensemble is the Gaussian orthogonal ensemblé

(GOE) andp = 1, while systems that break time-reversal

symmetry are characterized by the Gaussian unitary ensembl

(GUE) andp = 2. Chaotic nuclear and molecular systems
always haveg = 1. The partial width amplitudes can be shown
to have a joint Gaussian distributién

P(y) O (detv)) ¥ (r2M 9)
whereMce = y* . is the channel correlation matrix andis

a column vector of the partial width amplitudes(all y. refer
to the same levat). Equation 9 follows from RMT using the

fact that the partial widths can be described as the projection
of the internal wave function (of the closed system) on the open
channels. In the following we assume, without loss of general-

ity, that all the A channels are uncorrelated. Otherwise, it is

always possible to transform to the set of eigenchannels. The

eigenvalues oM are just the average partial widtls of the

eigenchannels. Using, = Zé\:l lyndl? and the known distri-
bution (eq 9) of the partial width amplitudes,, it is possible
to derive the total width distributioR(I'y)).24#2” Such distribu-

tions were observed, for example, in the measured decay rate

of highly excited vibrational states of formaldehyde in its ground
electronic state$p.824 They were also reproduced in numerical
simulations of a two-dimensional model chaotic ca#ityFor

the ensemble average of the decay factor in eq 7 we then find

[t] )ﬂ/Z 1

g (2N = de(l +=M i —
B ¢ (1+ (U)LY
(10

To leading order in I, T', andI'y, (n = m) are statistically
independent so thaexp[—|[t|(T,+T,)/2] = [exp(|t|T/2)]°.
From the known RMT spectral statistics we also have

_ \dE-Ent— 5[ L) t
e ]

wherety = 27p (p is the average level density) is the Heisenberg
time. by4(7) is the two-level form factor, defined as the Fourier
transform of the two-point cluster functiorps(s). The form

(11)

Y,

N 1
=00 T
c T

B+2

BT @+ 20T

where we have used the transmission coefficiéiits For a
weakly coupled system, the average partial willghs related

rfo the transmission coefficiefit in channek by T'c = T/27p.22

n the limit of closed systeni. = O for all channels and eq 13
educes to eq 12 of ref 14.

The ensemble average of the spectral autocorrel&i@y)
js found by taking the inverse Fourier transform of eq 13.
efining the reduced spectral autocorrelation function

9(@) = [0(B)oE + w) — ((E)V(@(E) = [(FING(w) —
(a(E))z]/(o(E)),2 we find the following universal form:

b+2 .
Os(w) = 2|—— dr cos (2 ‘L’)ll——
b Jo “O 1+ (2B)T.0)"

“ dr cos (Ztwr)b, 4(7) [1—————| (14)
Jo o ot |:|(1+(1/ﬂ)TCr)ﬁ

By defining a functionFs(w) in the energy domain

Fyw)=2 [ dr cos (2twr) [] ———
/ ) l_l L+ BT a5

e can rewrite the reduced spectral autocorrelation in the form

gy() = [%2 Fy(@) — [ Yo (@)F (0 — )
(16)

There are two interesting limits for eq 16. In the limit of a
closed system all transmission coefficients vanigh= 0), and
eq 14 reduces 6

B+2

gplw) = Té(w) — Yau(0) 17)

The second term in eq 17 gives rise to the correlation hole
discussed in the introduction. Another limit far equivalent
open channelsTg = T for all ¢) is the limit A — o such that
AT = k is kept constant. This is equivalent to taking the limit
of a large number of equivalent channels while keeping the total
average width" of the level constant. In this limit the integrand
in eq 14 becomes & andF(z) = («/2) [(Tw)? + (k/2)]Lis

a Lorentzian which is independent 8f Thus we obtaiff
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1.0 T T T 7 T T y resonances. The correlator is universal and depends only on

I i the symmetry class (i.e., conserved or broken time-reversal

GOE (8=1) symmetry), and the partial dissociation widths (or transmission

0.5 1 7 coefficients) for the open channels. The correlation hole, a
gl(co) p . signature of chaos in both the power spectrum and survival
0.0 probability, disappears gradually as more channels are opened,

and it does so faster in systems that conserve time-reversal
symmetry. It would be interesting to compare our prediction

-05 ) 7 for the correlation hole in open systems (for the case of time-
-7 - reversal symmetry) with actual measurements or numerical

1.0 I. ; } .' : , ; simulations of indirect photodissociation spectra of complex

i molecules.
0.5 fi GUE (8=2) . : .
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