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We derive the statistical limit of the spectral autocorrelation function and of the survival probability for the
indirect photodissociation of molecules in the regime of nonoverlapping resonances. The results are derived
in the framework of random matrix theory and hold more generally for any chaotic quantum system that is
weakly coupled to the continuum. The “correlation hole” that characterizes the spectral autocorrelation in
the bound molecule diminishes as the typical average total width of a resonance increases.

Quantum systems that are classically chaotic are believed to
exhibit statistical fluctuations in their spectra and wavefunctions
that are universal.1 These universal properties are well-
reproduced by the assumption that the Hamiltonians belong to
an ensemble of Hamiltonians that are consistent with the
underlying symmetries but are otherwise random. Such random
Hamiltonians are described by random matrix theory (RMT)2,3

and lead to level repulsion, long-range correlations in the
spectrum, and Porter-Thomas statistics for the transition
intensities. RMT was initially developed to explain the statisti-
cal properties of the neutron resonances in the compound
nucleus.2 However, similar statistical fluctuations are observed
in a variety of molecular systems. These include fluorescence
excitation spectra of polyatomic molecules, e.g., the vibrational
levels and intensities of nitrogen dioxide4,5 and pyrazine.6 Level
repulsion was observed in acetylene,7 and statistical signatures
of RMT were found in the Stark level-crossing spectra of
formaldehyde at the dissociation threshold.8 At low excitations
the molecular Hamiltonian is approximately separable (though
anharmonic), and the vibrational eigenstates are described by
normal modes, allowing the assignment of good quantum
numbers (“regular” regime). However, at higher excitations the
normal modes are strongly mixed and the spectrum is better
characterized in terms of its statistical properties (“chaotic”
regime). A transition from regular to chaotic spectrum was
observed in the vibrational levels of CS2.9

Statistical measures of a spectrum include the nearest
neighbors level spacing distribution and spectral rigidity (e.g.,
the Mehta-Dyson ∆3 statistics). Such measures require ac-
curate experimental determination of a complete set of levels.5

In practice this is not always possible since the finite experi-
mental resolution makes it difficult to determine the statistics
of the small level spacings. In molecular spectroscopy it is

particularly difficult to measure a complete set of levels because
the density of states is very large at higher excitations.

A measure of chaos that is less sensitive to experimental
resolution is the spectral autocorrelation function and its
counterpart in the time domain, the survival probability.10,11

Since the spectral autocorrelation involves the convolution of
the spectrum (i.e., strength function) with itself, it is less
sensitive to experimental noise. The spectral autocorrelation
function is easily constructed from the experimental measure-
ments. For example, using lasers one can excite molecules that
are vibrationally and rotationally cooled and measure their
absorption or fluorescence spectra (i.e., the strength function
of the dipole operator). The convolution of the measured
spectrum with itself is the spectral autocorrelator or the power
spectrum. The corresponding quantity in the time domain, i.e.,
the Fourier transform of the power spectrum, is the probability
that an initially prepared nonstationary state (e.g., the state
generated by the operation of the dipole operator on the ground
state of the molecule) remains in its initial state at a later time.
For a chaotic or complex system, it was suggested that the power
spectrum and the associated survival probability of the experi-
mentally prepared state are characterized by the existence of a
“correlation hole” (i.e., a pronounced local minimum) that
originates in the repulsion of energy levels.12 A correlation hole
was observed in the spectrum of highly excited vibrational levels
of complex molecules like methylglyoxal12 and acetylene.13 The
correlation hole is a signature of chaos and it disappears when
the dynamics of the system becomes regular.

The average survival probability and power spectrum in
chaotic systems were evaluated in a closed form using RMT
for the various classes of Gaussian ensembles,14 and in the
framework of a scattering model.15 Similar expressions can be
obtained by considering discrete time evolution for the circular
Dyson ensembles.16 The survival probability (and the associated
power spectrum) carries information on both spectral and
eigenvector statistics.11 The derivation was restricted to systems
that are closed and have discrete spectra. However, in many
physical situations we are interested in the spectrum at high
excitations, where the eigenstates are coupled to the continuum
and become resonances. The coupling of the quantum system
to the continuum is expected to diminish the correlation hole.
Experimentally one usually observes a quenched correlation
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hole, an effect attributed to unobserved good quantum numbers13

and/or the transition to regular dynamics.17,18 However, since
the correlation hole can also be affected by the coupling of the
closed system to its environment, it is important to derive the
correlation hole quantitatively in this more general situation.

An important class of processes where coupling to the
continuum is important is the photodissociation of molecules.
In particular we are interested in indirect photodissociation that
proceeds through resonances of the excited molecular complex.19

A light pulse excites the molecule to a higher electronic state
at energies above the dissociation threshold but where a potential
barrier hinders the immediate dissociation of the molecule. The
barrier is usually formed because of the avoided crossing of
two diabatic electronic potential surfaces (one that is binding
and one that is repulsive). Vibrational excitations (below and
above the barrier) become resonances whose widths depend on
the coupling between the binding and repulsive manifolds. Such
resonances can also be populated in molecular reactions that
proceed through an excited molecular complex.

Recently, the universal correlator for the bound-to-continuum
strength function was derived for any degree of openness of
the quantum system,20 by using the method of the supersym-
metric nonlinearσ model.21,22 However, the general expression
turned out to be rather complicated. Here we show that in the
regime of isolated resonances (i.e., weak coupling) a much
simpler closed form can be derived by using random matrix
techniques. This regime of nonoverlapping resonances corre-
sponds to indirect photodissociation at energies where the
corresponding vibrational resonances lie below the barrier in
the excited electronic potential surface. The width of such
resonances is smaller than a typical separation between vibra-
tional states by a factor of up to several thousand. The
derivation in this paper is accomplished in the time domain
where the survival probability of the experimentally prepared
nonstationary state is averaged over the ensemble. This
derivation is analogous to that used in ref 14 for closed systems.
However, in the case of an open quantum system, it is necessary
to take into account the decay of the system into the continuum.
The probability for an open chaotic system (that is initially
bound) to remain bound at a later time was calculated in ref
23. The coupling of the system to the continuum is described
by the average partial widths of the system to decay into each
of the open dissociation channels. The spectral correlator
derived in this paper in the quantum ergodic limit (see eqs 16
and 15 below) depends only on these average partial “dissocia-
tion” widths (and the symmetry class of the Hamiltonian) but
is otherwise universal. We find that the correlation hole
diminishes when the partial widths of the resonances become
larger or when the number of open channels increases.

An open system is described by an effective HamiltonianHeff

) H - iΓ/2, whereH is the Hamiltonian of the system when it
is uncoupled from the continuum andΓ is a matrix describing
the coupling of the system to external open channels.22,24,25In
indirect dissociation,H represents that part of the Hamiltonian
that includes the “binding” potential energy surface only, while
the open channels describe the possible dissociative states of
the molecule. The eigenstates|n〉 of Heff have complex
eigenvaluesEn - iΓn/2, describing resonances with energies
En and widthsΓn. Bound-to-continuum transitions that proceed
through resonance states are described by the strength function
of the corresponding transition operatorT:19

In eq 1 each transition intensity (to a state imbedded in the
continuum) is weighted by a Lorentzian centered at the
resonance energy. In indirect photodissociation, the photoab-
sorption spectrum is proportional to eq 1 whereT is the dipole
operator of the molecule. In the following we consider only
weakly coupled systems that are characterized by nonoverlap-
ping and narrow resonances (relative to their mean spacing). In
this case|n〉 are just the eigenstates of the closed system
HamiltonianH, En are the eigenvalues ofH (to leading order
we ignore shifts in eigenvalues), and the widths are given by

whereΓnc ) |γnc|2 is the partial width of a resonance leveln to
decay into an open channelc (γnc is the partial width amplitude).
We assume that there areΛ open channels. In theR-matrix
formulation of reaction theory it is possible to express the partial
width amplitude as an overlap integral of the eigenstaten and
the corresponding channel wave function at the interface of the
internal “interaction” region and the external asymptotic re-
gion.26

The total strength satisfies the sum rule14

so that the experimentally prepared stateT|g〉 can be normalized

by defining |R〉 ≡ T|g〉/x〈g|T†T|g〉. The normalized strength
function σ̃(E) ) σ(E)/∫σ(E′) dE′ can then be rewritten as

In the following we shall simply useσ(E) to denote the
normalized strength function.

The spectral autocorrelation functionG(ω) is defined in terms
of the strength function by11

In the time domain we can defineC(t) as the Fourier transform
of σ(E), C(t) ) ∫-∞

∞ exp(-iEt)σ(E) dE. Using eq 4 we find

where|R(t)〉 ≡ exp(-iHefft)|R〉 is the state at timet that evolves
from the experimentally prepared nonstationary initial state|R〉
under the effective HamiltonianHeff. Thus the Fourier trans-
form of the spectral autocorrelationG(ω) is just the survival
probabilityP(t) ) |C(t)|2, i.e., the probability at timet that the
system remains at its initially prepared state. Notice that for
an open system, decay (into the continuum) is included in the
time evolution. By use of eq 6, the survival probability can be
expressed as

σ(E) ) ∑
n

|〈n|T|g〉|2
Γn/2

(E - En)
2 + Γn

2/4
(1)

Γn ) ∑
n)1

Λ

Γnc (2)

∫ σ(E) dE ) ∑
n

|〈n|T|g〉|2 ) 〈g|T†T|g〉 (3)

σ̃(E) ) ∑
n

|〈n|R〉|2 1

π

Γn/2

(E - En)
2 + Γn

2/4
(4)

G(ω) ) ∫-∞

∞
σ(E)σ(E + ω) dE (5)

C(t) ) ∑
n

|〈n|R〉|2e-iEnt-Γn|t|/2 ) 〈R|R(t)〉 (6)

P(t) ) ∑
n

|〈n|R〉|4 e-Γn|t| + ∑
n*m

|〈n|R〉|2| 〈m|R〉|2 ei(En-Em)t ×

e-|t|(Γn+Γm)/2 (7)
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We would like to calculate the ensemble average ofP(t). In
RMT, the eigenvalues and eigenvectors are statistically inde-
pendent. This implies that|〈n|R〉|2 andΓn (which are determined
by the eigenfunctions) are statistically independent from the
spectrumEn. Moreover, we assume that the prepared state|R〉
has no overlap with the channels, so that the projection of the
eigenstate|n〉 on |R〉 and on the channels (i.e., partial width
amplitudes) are also statistically independent. We conclude that
all three quantities,|〈n|R〉|2, Γn, andEn, appearing in eq 7, are
statistically independent. Consequently, the ensemble average
on the right-hand side of eq 7 can be taken over each factor
separately. In RMT, the eigenvector components are distributed
randomly on theN-dimensional sphere, and thus one finds for
a fixed normalized vector|R〉:

Hereâ is a constant that depends on the corresponding Gaussian
ensemble. For systems that conserve time-reversal symmetry,
the relevant ensemble is the Gaussian orthogonal ensemble
(GOE) andâ ) 1, while systems that break time-reversal
symmetry are characterized by the Gaussian unitary ensemble
(GUE) andâ ) 2. Chaotic nuclear and molecular systems
always haveâ ) 1. The partial width amplitudes can be shown
to have a joint Gaussian distribution27

whereMcc′ ≡ γ* cγc′ is the channel correlation matrix andγ is
a column vector of the partial width amplitudesγc (all γc refer
to the same leveln). Equation 9 follows from RMT using the
fact that the partial widths can be described as the projection
of the internal wave function (of the closed system) on the open
channels. In the following we assume, without loss of general-
ity, that all theΛ channels are uncorrelated. Otherwise, it is
always possible to transform to the set of eigenchannels. The
eigenvalues ofM are just the average partial widthsΓhc of the
eigenchannels. UsingΓn ) ∑c)1

Λ |γnc|2 and the known distri-
bution (eq 9) of the partial width amplitudesγnc, it is possible
to derive the total width distributionP(Γn).24,27 Such distribu-
tions were observed, for example, in the measured decay rates
of highly excited vibrational states of formaldehyde in its ground
electronic statesS0.8,24 They were also reproduced in numerical
simulations of a two-dimensional model chaotic cavity.27 For
the ensemble average of the decay factor in eq 7 we then find

To leading order in 1/N, Γn and Γm (n * m) are statistically

independent so thatexp[-|t|(Γn+Γm)/2] ) [exp(-|t|Γn/2)]2.
From the known RMT spectral statistics we also have

wheretH ≡ 2πFj (Fj is the average level density) is the Heisenberg
time. b2,â(τ) is the two-level form factor, defined as the Fourier
transform of the two-point cluster functionY2,â(s). The form

factor is known analytically for both the GOE and GUE
ensembles3

Combining eqs 8, 10, and 11 and measuring time in units of
the Heisenberg time (τ ) t/tH), we find for the ensemble average
of the survival probability

where we have used the transmission coefficientsTc. For a
weakly coupled system, the average partial widthΓhc is related
to the transmission coefficientTc in channelc by Γhc ) Tc/2πFj.22

In the limit of closed systemTc ) 0 for all channels and eq 13
reduces to eq 12 of ref 14.

The ensemble average of the spectral autocorrelationG(ω)
is found by taking the inverse Fourier transform of eq 13.
Defining the reduced spectral autocorrelation function

g(ω) ≡ [σ(E)σ(E + ω) - (σ(E))2]/(σ(E))2 ) [(Fj/N)G(ω) -
(σ(E))2]/(σ(E)),2 we find the following universal form:

By defining a functionFâ(ω) in the energy domain

we can rewrite the reduced spectral autocorrelation in the form

There are two interesting limits for eq 16. In the limit of a
closed system all transmission coefficients vanish (Tc ) 0), and
eq 14 reduces to14

The second term in eq 17 gives rise to the correlation hole
discussed in the introduction. Another limit forΛ equivalent
open channels (Tc ) T for all c) is the limit Λ f ∞ such that
ΛT ) κ is kept constant. This is equivalent to taking the limit
of a large number of equivalent channels while keeping the total
average widthΓh of the level constant. In this limit the integrand
in eq 14 becomes e-κ|τ| andFâ(τ) ) (κ/2) [(πω)2 + (κ/2)2]-1 is
a Lorentzian which is independent ofâ. Thus we obtain20

b2,â(τ) )

{[1 - 2 |τ| + |τ|ln(1 + 2|τ|)] θ(1 - |τ|) + [|τ|ln (2|τ| + 1
2|τ| - 1) - 1] θ(|τ| - 1) (â ) 1)

(1 - |τ|) θ(1 - |τ|) (â ) 2)}
(12)

NP(τ) ) δ(τ) - b2,â(τ) ∏
c

1

(1 + |τ|Tc/â)â
+

â + 2

â
∏

c

1

(1 + 2|τ|Tc/â)â/2
(13)

gâ(ω) ) 2[â + 2

â
∫0

∞
dτ cos (2πωτ) ∏

c

1

(1 + (2/â)Tcτ)â/2
-

∫0

∞
dτ cos (2πωτ)b2,â(τ) ∏

c

1

(1 + (1/â)Tcτ)â] (14)

Fâ(ω) ) 2∫0

∞
dτ cos (2πωτ) ∏

c

1

(1 + (2/â)Tcτ)â/2

(15)

gâ(ω) ) â + 2
â

Fâ(ω) - ∫-∞

∞
dω̃ Y2,â(ω̃)F2â(ω - ω̃)

(16)

gâ(ω) ) â + 2
â

δ(ω) - Y2,â(ω) (17)

|〈n|R〉|2| 〈m|R〉|2

|〈n|R〉|4
) â

â + 2
(8)

N|〈n|R〉|4 ) â + 2
Nâ + 2

P(γ) ∝ (detM)-(â/2)e-(â/2)γ†M-1γ (9)

e-(Γn/2)|t| ) det(1 +
|t|
â

M)-â/2

) ∏
c

1

(1 + (|t|/â)Γhc)
â/2

(10)

(N - 1)ei(En - Em)t ) δ( t
tH) - b2,â( t

tH) (11)
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Equations 16 and 15 provide a closed expression for the
universal spectral autocorrelation in weakly open chaotic
systems, and is the main result of this paper. In Figure 1 we
compare the GOE and GUE reduced spectral autocorrelators
for an open system coupled toΛ ) 1, 5, and 10 equivalent
channels with a partial transmission coefficient ofT ) 0.01 in
each channel. For reference, we show by a dashed line the
spectral correlator for a closed system (not including theδ
function atω ) 0). As the number of channels increases, the
correlation hole shrinks. It is seen that for the same number of
open channels, the GOE correlation hole is shallower than the
GUE hole. Thus the GOE hole disappears faster when opening
the system to more channels. This could be explained by the
stronger level repulsion in the GUE case. A similar effect (not
shown here) is observed for a fixed number of channels as the
transmission coefficient increases. Generally, we observe a
shallower hole as the total mean resonance width increases.20

In conclusion, we have derived in closed form the spectral
autocorrelation function and survival probability for bound-to-
continuum transitions that proceed through a regime of isolated

resonances. The correlator is universal and depends only on
the symmetry class (i.e., conserved or broken time-reversal
symmetry), and the partial dissociation widths (or transmission
coefficients) for the open channels. The correlation hole, a
signature of chaos in both the power spectrum and survival
probability, disappears gradually as more channels are opened,
and it does so faster in systems that conserve time-reversal
symmetry. It would be interesting to compare our prediction
for the correlation hole in open systems (for the case of time-
reversal symmetry) with actual measurements or numerical
simulations of indirect photodissociation spectra of complex
molecules.
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Figure 1. Reduced spectral autocorrelation functiong(ω) vs ω for Λ
) 1, 5, and 10 equivalent channels, each with a transmission coefficient
of T ) 0.01 (solid lines). The minimum ofg(ω) (“correlation hole”)
becomes shallower as the number of channels increases. For reference
we also show by dashed lineg(ω) for a closed system (without theδ
function atω ) 0). Top, GOE statistics (â ) 1); bottom, GUE statistics
(â ) 2).
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∫-∞
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